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Abstract-The variations of root-mean-square (r.m.s.) temperature and velocity in turbulent thermal 
convection above a heated, horizontal surface are analyzed by extending the arguments of Castaing et al. 
([l]: J. Fluid Mech. 204, l-30 (1989)) which lead to the two-sevenths power law for heat transfer. 
Asymptotic matching of properties scaled on Deardoff s convection scales with those scaled on Castaing 
et al.‘s lambda-layer show that the r.m.s. temperature decays as z-“’ and the r.m.s. vertical velocity 
increases as log z. These results are supported by data from Rayleigh convection and unsteady convection, 

both penetrative and non-penetrative. Copyright 0 1996 Elsevier Science Ltd. 

Turbulent thermal convection in fluid layers lying over 
heated horizontal surfaces contains warm, buoyant 
fluid elements which lose temperature excess by heat 
transfer to the surroundings and gain vertical velocity 
by buoyant acceleration as they rise upwards. The 
converse process takes place when negatively buoyant 
fluid descends from a cooled horizontal surface. Since 
buoyant fluid creates a large proportion of the tur- 
bulent fluctuations in the velocity and temperature, 
the intensities of fluctuation, as measured by root- 
mean-square (r.m.s.) values, change systematically 
with height. This variation of the intensities is necess- 
ary empirical input to various models of turbulent 
dispersion and mixing, and it characterizes the tur- 
bulent flow field in a fundamental way. 

Figure 1 indicates schematically the profiles of the 
mean temperature, T, the total heat flux 

Q(z) = (wO)-Kg (1) 

the r.m.s. of the vertical velocity fluctuation 
CT, = (,*),2, and the r.m.s. of the turbulent tem- 
perature fluctuation 8, erg = (02)“2. Here brackets 
denote ensemble averaging, z is the vertical coor- 
dinate, g is the acceleration of gravity, and K is the 
thermal diffusivity. The figure shows two con- 
figurations : Rayleigh convection between a hot lower 
surface and a cold upper surface, Fig. l(a), and 
unsteady convection between a hot lower surface and 
an insulated upper surface, Fig. 1 (b). The layer depth 
is denoted by z*, and the layer is assumed to be wide 
compared to its depth. In Rayleigh convection, the 
total heat flux is constant, Q = Q,,, whereas in 
unsteady convection the total heat flux decreases lin- 

early from the value Q. applied to the lower surface 
to zero at the upper surface (assuming it is perfectly 
insulating). Unsteady convection over a hot surface is 
just the mirror image of convection between a cooled 
upper surface and an insulating lower surface. To a 
first approximation Rayleigh convection can be mod- 
eled as a combination of the two in which hot buoyant 
fluid ascends from the lower surface and cold buoyant 
fluid descends from the top surface. In this simple 
model the two linear heat flux profiles sum to produce 
the constant heat flux that must occur in Rayleigh 
convection. 

While the r.m.s. fluctuations of Rayleigh convection 
and unsteady convection above heated surfaces differ 
qualitatively in the top half of each layer, they are 
each similar in the bottom half. In general, the r.m.s. 
velocity increases from zero at the surface to a 
maximum close to the middle of the layer. The r.m.s. 
temperature, on the other hand, rapidly increases to 
a maximum, then decays to a minimum near the center 
of the layer in Rayleigh convection, or near the 
top in unsteady convection. An important difference 
between the unsteady case and Rayleigh convection 
is that the volume integrated buoyant production of 
turbulent kinetic energy is lower in the unsteady case. 
Offutt [2] has shown that using the volume averaged 
heat flux in the definition of velocity and temperature 
scales accounts for this difference and collapses the 
various profiles of r.m.s. quantities approximately 
onto one curve when properly scaled. Thus, the 
phenomena occurring in the lower half of each type 
of convection are substantially similar. 

Priestley’s [3, 41 similarity laws for the variation of 
r.m.s. vertical velocity, and r.m.s. temperature 
describe their behavior in a layer that is far enough 
above the heated surface to be unaffected by surface 
layer phenomena such as heat conduction, and far 
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NOMENCLATURE 

empirical constant 
empirical constant 

z* vertical depth of fluid layer [ml. 

empirical constant 
dimensionless function 
dimensionless function 
gravitational acceleration [m SK’] 
empirical constant 
Nusselt number 
Prandtl number 
kinematic heat flux [“C m SK’] 
kinematic heat flux at lower surface 
[“Cm ss’] 

Greek symbols 

P thermal coefficient of expansion [“C’] 
AT temperature difference [“Cl 

A, lambda layer temperature scale [“Cl 

; 
thermal diffusivity [m’ s- ‘1 
thickness of the lambda-layer [m] 

V kinematic viscosity [m’ SK’] 

: 
root mean square 
temperature fluctuation [“Cl. 

Rayleigh number 
flux Rayleigh number Subscripts 
mean temperature vertical velocity 
vertical velocity [m s ‘1 : conduction layer scaling 
lambda layer velocity scale [m SK’] * convection layer scaling 
vertical distance above lower surface [m] 0 temperature. 

enough below the top of the layer to be unaffected by and r.m.s. of temperature is proportional to z-“~. 
the depth of the layer, z*. Consequently, they pertain These results are derived from a dimensional analysis 
to a layer somewhat above the location of the peak of in which the only relevant length scale is assumed to 
the r.m.s. temperature and somewhat below the center be the height above the surface, z. A related law for the 
of the layer, indicated schematically in Fig. 1. The mean temperature gradient, dT/dz - ze413 was also 
laws state that the r.m.s. of w is proportional to z’j’ derived by Priestley [3,4] using dimensional analysis, 

_ I  
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Fig. 1. Types of convection and definition of scales. (a) Rayleigh, (b) unsteady non-penetrative 
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and earlier by Prandtl [5] who used a mixing length 
formulation based on the height above the surface. It 
is common to refer to these collectively as the Priestley 
similarity laws. 

The outer region of the thermal convection layer 
scales very well with Deardorff s [6] convection scales : 

length scale = z* w* = (j?gQ,z,)“3 6, = Q”/w*. 

(2a-c) 

In these equations /I is the coefficient of thermal expan- 
sion. These scales have been shown to correlate data 
ranging from laboratory scale experiments up to 
atmospheric scale experiments [7], spanning over 
eighteen orders of magnitude in the Rayleigh number. 
They are derived under the assumption of a balance 
between buoyant and inertial term, and negligible con- 
ductive heat flux. 

The correct scales for the region close to the heated 
surface are less well established. Townsend [8] showed 
good correlation of data in convection over a single 
heated surface by using the molecular scales 

z,, = K/W” w. =@gQ,+)“” @,, = Qo/wo. 

(3a-c) 

Here the assumption is that the conductive transfer of 
heat dominates, and that the layer is thin compared 
to z*, so that z* is not an important variable. With 
this scaling the momentum balance must be between 
the buoyancy and the viscous terms, with inertia being 
negligible, as it is implicit in (3a) that the Peclet num- 
ber and hence the Reynolds number must be of order 
one for Prandtl number of order unity. Practically this 
means that the Reynolds number must be bounded 
by a constant as Rayleigh number becomes infinite. A 
similar set of variables, modified by a weak depen- 
dence on Prandtl number has been shown to correlate 
the profiles of mean temperature very well for water 
and air data [9]. 

The Priestley similarity laws can be derived by 
asymptotically matching scaling laws based on Dear- 
dorffs convection scales with scaling laws based on 
Townsend’s molecular transfer scales [7, 9, lo]. This 
process leads to power laws in a manner analogous to 
Millikan’s [I 1] development of the famous log- 
arithmic law in forced convection (see also [12]). 

The classical result of scaling arguments for heat 
transfer in Rayleigh convection is the one-third law 
for the Nusselt number-Rayleigh number relation : 

where 

Nu = N,,Rali3 (4) 

Nu = QOz.& AT 

Ra = pg ATz:/Kv. 

(5) 

(6) 

Here, No is a constant, v is the kinematic viscosity and 
AT is the total temperature drop. In these arguments 
all of the temperature drop is supposed to occur in 

the inner layers, and to be controlled by the scales of 
that layer only. The one-third exponent on the Ray- 
leigh number implies that the Nusselt number is inde- 
pendent of the total layer depth, z*. The one-third law 
for heat transfer is also frequently associated with 
Priestley’s laws for the variation of the mean tem- 
perature gradient, dT/dz _ z4’3 [ 121. 

In the unstable planetary boundary layer, where the 
Reynolds number is very high and the lowest layer is 
one of turbulent forced convection, there is support 
for Priestley similarity of the r.m.s. velocity and tem- 
perature [13, 141, although the scatter of the data is 
large. However in laboratory convection experiments, 
the evidence is less convincing [7]. Moreover. the 
exponent of the heat transfer relation is very clearly 
not equal to one-third [I, 15, 161 with most results in 
the range 0.278-0.30. 

I-LAYER SCALING 

The observations of Castaing et al. [ 1] of Rayleigh 
convection over a six decade wide range of Rayleigh 
numbers provide convincing evidence that the Nusselt 
number varies in proportion to the Rayleigh number 
raised to the two-sevenths power in this range. Their 
experimental results give 

NM = 0.23Ra’ 282 (7) 

where the uncertainty of the exponent is 0.282 k 0.006. 
They offer two alternative derivations of this result, 
each based on simple arguments that involve two lay- 
ers : a core layer which is inertial and buoyant and a 
‘mixed’ layer which is a viscous, inertial and buoyant 
layer, in which molecular heat conduction and tur- 
bulent heat transfer are comparable. In the alternative 
derivations the core layers are the same, but different 
relationships are developed for the mixed layer. 

It can be shown that the analysis of the core layer 
given by Castaing et al. [1] is equivalent to the deri- 
vation of the convection layer scales given by Dear- 
dorff [6]. Thus, the core layer is the same as the high 
Reynolds number convection layer discussed in earlier 
work [7], and as noted above, there is very good evi- 
dence for Deardorff scaling of this layer, extending up 
to atmospheric Reynolds numbers. The novel part of 
the analysis of Castaing et al. [l] postulates a wall 
layer of length scale 3. that lies below the convection 
layer. It can be shown that their first analysis of this 
layer is equivalent to postclating that it scales with 

/? = zJNu = K AT/Q0 tq, = fig ATi’/>, 

temperature scale = AT. (8as) 

The length scale i in (8a) was originally proposed by 
Kraichnan [17] as a measure of the depth of the wall 
layer at which half of the heat flux is convective and 
half is conductive. It is, therefore a mixed region of 
turbulent motion and molecular diffusion. (Since AT 
is the total temperature drop across both wall layers 
in Rayleigh convection, it would be more appropriate 
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to use AT/2 for each wall layer. For the purpose of 
scaling arguments Castaing, et al. ignore the factor of 
two, and we shall do likewise.) Castaing et al. [I] 
found the velocity scale in equation (8b) by balancing 
the fluctuating vertical buoyant force with the viscous 
stress, under the assumption that fluid elements in the 
wall layer have temperature excess of order AT and 
length scale for viscous shear of order 1. It is implicit 
that the stresses acting on the fluid are laminar viscous 
stresses, which limits the domain of validity of the 
analysis to a low Reynolds number layer close to the 
wall. Thus, the arguments should not be applied to 
convection in the atmosphere where the layer lying 
beneath the convective layer is highly turbulent forced 
convection. 

We shall refer to the layer defined by (8a) as the i.- 
lure1.. 

Equations (2) and (8) do not complete the problem 
without one further relationship. The critical assump- 
tion used to effect closure in the first model proposed 
by Castaing et al. [I] is that the velocity scale of the 
i-layer is equal to the velocity scale of the convective 
layer : 

bL’h = M‘*. (9) 

With this relation, equations (2b), (8a), (8b) and (9) 
lead immediately to 

Nu = N,Pr”‘Ra” (10) 

for Rayleigh convection. A similar relation can be 
found for unsteady convection with properly defined 
Rayleigh and Nusselt numbers. In either case the 
relationship 

(11) 

follows from equations (2), (8) and (9). The model 
comprised of (2aac), (8a-c) and (9) will be called the 
1-l model. 

A second theory, which will be called the E.-II model, 
was also developed on the basis of Deardorff con- 
vection scaling in the core layer, equations (2a) and 
(2b), Kraichnan’s length scale relation, equation (8a), 
and a new temperature scale given by 

(12) 

This scale represents the temperature of the i-layer 
after the thermals in the layer have mixed by turbulent 
motion. A detailed physical argument leading to (12) 
is given in Castaing et al. [ 11, but it can also be found 
by dimensional analysis under the assumption that 
neither z* nor Q,, affect the temperature scale of the A- 
layer. The critical assumption in the ;,-I1 model which 
effects closure is that the temperature scale of the i- 
layer is equal to the temperature scale of the core 
convection layer, 

A, = 0,. (13) 

By themselves, equations (2a), (2b), (8a) and (12) 
plus (13) are sufficient to predict the two-sevenths 
relationship in (10). Castaing et al. [I] view this as a 
more reasonable assumption than that of equal vel- 
ocity scales used in the I-I model. While it is not 
necessary to define a velocity scale in the >b-II model 
in order to arrive at the two-sevenths law, the scale 
implied by Castaing et al. [I] is just (8b). Interestingly, 
the equations (2a), (2b), (8a), (12) and (I 3) also imply 
that tr,, is just equal to by.+, as in (9). Hence the >.-I1 
model can be summarized as a statement of dimen- 
sional analysis that the i. M‘*, A,,, scales pertain in the 
).-layer, and that A,l, = O*. 

PROFILES OF THE R.M.S. QUANTITIES 

2-I Model 
As previously noted, it is well established that in the 

outer, convection layer the profile of tr,, is a universal 
function of z/z.+., independent of the Reynolds number 
or the Rayleigh number for all sufficiently large values. 
Let us denote this function by F, : 

o,,Jw* = F, (z/ctJ. (14) 

Likewise, the success of the i,-layer scaling in pre- 
dicting the two-sevenths law suggests that gu ought to 
be a universal function in the 3.-layer also : 

o,h, =,/&in). (15) 

Following Millikan [I l] the functions can be found 
by requiring that their derivative with respect to z 
match for all Rayleigh numbers (or, equivalently all 
values of ‘*/A, since this ratio depends on the Rayleigh 
number). Hence, 

do,,‘dz = (~~.+/z*)F~(z/z*) = (~+,/l),f;.(z/i). 

(16) 

Setting M?,, = IV.+ and multiplying by z gives 

(z/z*)F:(z/z*) = (z/n)f’&(z/n) (17a) 

= A, (17b) 

where (17b) follows because each side, being functions 
of different arguments can only be equal for all Ray- 
leigh numbers if they are constants. The integral of 
(17) gives 

a,i”.+ = A,, In (z/i.) +b, am/M>, = A, In (z/z,) + B, 

(18ab) 

where b, and B, are independent of z, but may depend 
on Pr. 

Note that the logarithmic variation results fun- 
damentally from the fact that the velocity scale is the 
same in both layers, cf. equation (9). In Millikan’s 
treatment of pipe and channel flow the logarithmic 
law for the mean velocity profile comes about because 
the friction velocity scales both the outer layer and 
the inner layer. In the present context given the scales 
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identified for the I-I layer and the convection layer, 
the equality of the velocity scales simultaneously 
implies the two-sevenths law and the logarithmic law. 
However, the logarithmic variation would result from 
any scaling argument in which the velocity scales were 
set equal, independent of whether or not the Nusselt 
number-Rayleigh number relationship obeyed the 
two-sevenths power law. 

The profile of u0 can also be obtained by asymp- 
totically matching dimensionless scaling laws of the 
J.-layer and the convection layer : 

so/AT =f&/i) a,/e, = F,(z/z,). (19a,b) 

Equating the gradient leads to 

donldz = (~&~#‘XZ/Z*) = (AT/~)fk(z/1) (20) 

which becomes 

F& = PY”~ (z,/l)“‘f; (21) 

after using (11). Multiplying by (z/z.+)“’ yields an 
equation that contains a function of (z/z,) on the left 
and (z/n) on the right 

(z/z*)3”F; = P?J’2(2/1)3’2,fO (22) 

and to match asymptotically each term must be a 
constant which we shall call - AB. Integrating equa- 
tion (22) then gives 

cr,/AT = A,Pr-“*(z/l)-“*+bR 

oO/B.,, = AO(z/z.J I’* + BB. (23) 

I-II Model 
In the second model of Castaing et al. [l] equality 

of the temperature scales and the velocity scales in the 
I-II layer and the convection layer imply that bg and 
a, each obey logarithmic laws similar in form to (18). 
Thus, the I-I and I-II models predict the same vari- 
ation for owr but distinctly different variation for bO. 

Experimental projles 
The foregoing scale arguments and asymptotic 

matching analyses are identical for unsteady convec- 
tion and Rayleigh convection, aside from the fact that 
the values of the various constants may differ due to 
the differences between the heat flux profiles. For this 
reason, results for unsteady convection will be pre- 
sented separately from those for Rayleigh convection. 

The r.m.s. vertical velocity shown in Fig. 2 is taken 
from unsteady, non-penetrative convection exper- 
iments in water [7] and the large eddy simulations of 
air [ 181. The data from [7] cover a range of heat fluxes 
and layer depths. The flux Rayleigh number defined 
by 

Ra, = flgQOz4&‘v (24) 

affords an unambiguous basis for comparing the 
unsteady convection and Rayleigh convection. For 
the data from ref. [7] in Fig. 2 8.48 x lo9 < Ran 
2.64 x 10”. The flux Rayleigh number of the LES 
result, being a simulation of the atmosphere, is much 
larger. Agreement between the data and the log- 
arithmic curve (solid line) is within the statistical sam- 
pling error of the measurements. The logarithmic fit 
spans a range from z/z, = 0.004 to about 0.1, approxi- 
mately a one-and-one-half decade range. 

Profiles of the r.m.s. velocity found in the Rayleigh 
convection simulations of Moeng and Rotunno [20] 
at Ra = 3.8 x lo5 and Kerr [21] at 2 x 10’ are shown 
in Fig. 3. Both are highly resolved direct numerical 
simulations that give r.m.s. vertical velocities at the 
centerline which agree closely with the experimental 
measurements of Deardorff and Willis [ 191 which are 
also shown. The latter data were taken at Ra = lo’, 
corresponding to Ra = 1.7 x 10’. Kerr’s [21] results 
corresponded to Ra, = 3.4 x 10’. Filled and unfilled 
symbols represent data from the top and bottom 
halves of the Rayleigh convection layer, respectively. 
While there is some difference in slope, all of the data 

Fig. 2. Root-mean-square of the vertical velocity fluctuation in unsteady non-penetrative convection. Filled 
squares: Schmidt and Schumann [18] ; other symbols : Adrian rt al. [7]. The solid line is a logarithmic 

curve. 
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0 0.2 0.4 0.6 0.6 1 

RMS w/w* 

Fig. 3. Root-mean-square of the vertical velocity fluctuation in Rayleigh convection. 0 : Deardorff and 
Willis [19] ; ??, 0 : Moeng and Rotunno [20] ; A, A : Kerr [21]. The solid line is a logarithmic curve. 

0.01 

0.1 1 10 

RMS T/T* 
Fig. 4. Root-mean-square of the temperature fluctuation in unsteady non-penetrative convection. Filled 
squares : Schmidt and Schumann [ 181; other symbols : Adrian et al. [7]. The heavy solid line is a z- I;2 slope, 

and the light solid line is a zmlr3 slope. 

can be fitted to a logarithmic curve over a range of 
heights between 0.02 < z/z* < 0.2, similar to the 
range found in Fig. 2, and consistent with the range 
expected for the overlap between the J.-layer and the 
convection layer. The results in Figs. 2 and 3 support 
the logarithmic law stated in equation (18), and offer 
indirect support for the equality of the velocity scales 
of the I-layer and the convection layer, equation (9). 
They do not, however discriminate between the /2- 
I and the i-11 models, since both models imply a 
logarithmic law. 

Profiles of the r.m.s. temperature fluctuation are 
plotted in Fig. 4 using unsteady convection data from 
the same sources as in Fig. 2. Unsteady convection 
offers a better test of the r.m.s. temperature profile 
than Rayleigh convection because bg varies over a 
greater range. In particular it decays to a smaller value 
far above the lower plate. The experimental data all 

scale well with the convection temperature scale, and 
generally follow a ZC’/* power law (solid line). The 
LES data of ref. [ 181 lie below the best fit to the 
experimental data, but also generally follow the z-“* 
slope. The z- ‘/’ law is a much better fit to the data 
than the z-“~ law predicted by Priestley similarity, 
and it is a better fit to the experimental data than the 
logarithmic variation predicted by the A-11 model, cf. 
Fig. 5. However, the LES data in Fig. 5 fit the log- 
arithmic variation as well as they fit the ZC’;’ profile. 

Other experimental data offer less clear support for 
the new laws. Measurements of gW by Garon and 
Goldstein [22] agree better with the z”~ law than with 
the logarithmic law, but they are even fundamentally 
at odds with most data in that they do not scale well 
with Deardorff’s convection velocity. Atmospheric 
results are generally thought to agree with the Priestley 
laws, but they are scattered enough to make agreement 
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0 1 2 3 4 5 6 7 

RMS T/T* 
Fig. 5. Root-mean-square of the temperature fluctuation in unsteady non-penetrative convection 

as in Fig. 4. The solid line is a logarithmic curve. 
Symbols 

with the present results also possible. For example, 
Businger et al. [23] report that the mean temperature 
gradient varies as dT/dz N z -312, consistent with the 
variation of the r.m.s. temperature derived here. How- 
ever, the present matching assumes a viscous layer 
which surely does not exist in the atmospheric case, 
unless one invokes an analogy with small scale eddy 
viscosity. Croft [24] on the other hand also reports 
dT/dz - z -312 in a laboratory experiment. Clearly, fur- 
ther work is needed to establish the limits of validity 
of any of the power laws. 

Previously it was shown that asymptotically mat- 
ching a layer that scales with Deardorff s convection 
layer variable to a layer that scales with Townsend’s 
[8] wall layer variables leads to Priestley’s laws for oW 
and go [7]. Further, Townsend’s variables seem to 
give good correlation of the velocity and temperature 
statistics in the wall layer. How then is it that L-layer 
scaling gives a better description? The answer to this 
question lies in the very small differences between 
Townsend’s scales and those of the i,-layer. It is 
straightforward to show that 

and hence that the difference between the two scalings 
would not be revealed by direct examination unless the 
Rayleigh number were varied over very many decades. 
This range of Rayleigh numbers was not achieved 
until the experiment of Castaing et al. [l]. 

SUMMARY AND CONCLUSIONS 

In turbulent thermal convection above wide hori- 
zontal surfaces the fluid mechanics in the layer close to 
the heated surface involves a balance between viscous 
diffusion, inertia and buoyancy, and far above the 
surface the flow is a balance of inertia and buoyancy. 
Classical analysis of the layer between the two regions 
implies that the r.m.s. of the temperature and velocity 
vary as z -I,” and z”~, respectively. These are the well- 

known similarity laws of Priestley [3, 41. It has been 
shown that analysis consistent with the two-sevenths 
power law for the Nusselt number-Rayleigh number 
relation, equation (7), implies a new set of laws in 
which the r.m.s. vertical velocity varies as the log- 
arithm of height, equation (18), and the r.m.s. tem- 
perature fluctuation varies as z-‘:‘, equation (23). 
Results from Rayleigh convection and unsteady con- 
vection agree better with these laws than with the 
Priestley laws, presenting a consistent picture whose 
essential elements are the i-1 layer scaling in equation 
(8) and equality of the i-layer velocity scale and Dear- 
dorff s convection scale. 

Although the analyses presented here are based on 
matching arguments applied in the limit of infinite 
Rayleigh number, it is unlikely that they actually hold 
for very large Rayleigh numbers because the I-layer 
scaling fundamentally implies a Reynolds number, 
w&v that grows without bound as Ra increases, and 
this must ultimately violate the assumption of a vis- 
cous-inertial-buoyant balance. The Reynolds num- 
ber is easily shown to be given by 

n*1/\’ = N,2Prm2’3Ra’ ‘. (26) 

If one estimates a transition from laminar to turbulent 
flow for Reynolds number between 100 and 1000, the 
corresponding transition Rayleigh number is of order 
10i4-IO”. Even the lower bound exceeds the Rayleigh 
number attained in the experiments of Castaing et ul. 
[l], indicating that behavior consistent with a viscous 
I-layer may not be observed at higher values of Ra. 
This may explain why Priestley similarity laws are 
observed in the atmosphere, where the Reynolds num- 
bers are such that the layer adjacent to the ground is 
fully turbulent. 

Acknowledgement-Research supported by National Science 
Foundation grant ATM 89-20605. 
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